If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5=180
We move all terms to the left:
x^2+5-(180)=0
We add all the numbers together, and all the variables
x^2-175=0
a = 1; b = 0; c = -175;
Δ = b2-4ac
Δ = 02-4·1·(-175)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*1}=\frac{0-10\sqrt{7}}{2} =-\frac{10\sqrt{7}}{2} =-5\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*1}=\frac{0+10\sqrt{7}}{2} =\frac{10\sqrt{7}}{2} =5\sqrt{7} $
| 5c+20=2c-10 | | 9x-8=4x+12= | | 32 x−24=61 x−6 | | |6x+17|=|3x+8| | | 90=54+55+x+74 | | 5x-9=2x+3= | | 4x+(-6)=2x+10 | | (x)(x+12)=72 | | 5x-9=2x+9= | | 8-(x+7)=x-9 | | (20x-9)+(10x+9)=180 | | -8+7=9x+10 | | (x+12)(x)=72 | | -8=-10j-6 | | 20x-7=12x+9= | | 2x+-10=3x-4+1x | | 3n+2(n-1)-16=32 | | 3x(-4)=60 | | 8x-4=10x+(-1) | | 36x+1-16x-4=85 | | 1.3=x5.8 | | X2+12x=72 | | n/8-7=-6 | | 7x-1+3(4x+5)=90 | | -2(3x+5)=-3(4x+1) | | 7x+(-7)=-9x-4 | | (8x+17)=67 | | -3(2x-1)+9=5(x-2) | | (9x-12)=42 | | -2(c-11)=3(c+2) | | 2x+3(2x+4)-2=2(4x+5) | | 4(2-x)=-4+3 |